Matura historia 2018 – jak wygląda? Zmiany wprowadzone od roku szkolnego 2014/2015 sprawiły, że „nowy” egzamin maturalny z historii to teraz wyłącznie poziom rozszerzony, na który składa się część testowa, analiza źródeł oraz wypracowanie (5 tematów do wyboru).

Przejdź do treściAkademia Matematyki Piotra CiupakaMatematyka dla licealistów i maturzystów Strona głównaDlaczego warto?O mnieOpinieKontaktChce dołączyć!Opublikowane w przez Matura czerwiec 2012 zadanie 11 Pięciokąt ABCDE jest foremny. Wskaż trójkąt przystający do trójkąta ECD:Pięciokąt ABCDE jest foremny. Wskaż trójkąt przystający do trójkąta ECD:Chcę dostęp do Akademii! Dodaj komentarz Musisz się zalogować, aby móc dodać wpisuPoprzedni wpis Matura czerwiec 2012 zadanie 12 Punkt O jest środkiem okręgu przedstawionego na rysunku. Równanie tego okręgu ma postać:Następny wpis Matura czerwiec 2012 zadanie 10 Punkt O jest środkiem okręgu. Kąt wpisany BAD ma miarę:

Matura chemia – czerwiec 2018 – poziom rozszerzony. Matura chemia – czerwiec 2018 – poziom rozszerzony – odpowiedzi. Podziel się tym arkuszem ze znajomymi: Na odważkę stopu glinu z magnezem o masie 7,50 g podziałano nadmiarem rozcieńczonego kwasu solnego. Podczas roztwarzania stopu w kwasie solnym zachodziły reakcje zilustrowane równaniami: 2Al + 6HCl → 2AlCl3 + 3H2 Mg + 2HCl → MgCl2 + H2 W wyniku całkowitego roztworzenia stopu otrzymano klarowny roztwór, do którego dodano nadmiar wodnego roztworu wodorotlenku sodu. Zaszły reakcje opisane równaniami: AlCl3 + 6NaOH → Na 3[Al(OH)6] + 3NaCl MgCl2 + 2NaOH → Mg(OH)2 + 2NaCl Otrzymany nierozpuszczalny w wodzie związek odsączono, przemyto wodą, wysuszono i zważono. Jego masa (w przeliczeniu na czysty wodorotlenek magnezu) była równa 11,67 g. (0–2) Oblicz zawartość procentową glinu w stopie (w procentach masowych). (0–1) Klarowny roztwór uzyskany po odsączeniu osadu Mg(OH)2 nasycono tlenkiem węgla(IV). Zaobserwowano wytrącenie białego osadu wodorotlenku glinu. Napisz w formie jonowej skróconej równanie opisanej reakcji chemicznej. Rozwiązanie (0–2) Schemat punktowania 2 p. – za zastosowanie poprawnej metody, poprawne wykonanie obliczeń oraz podanie wyniku w procentach. 1 p. – zastosowanie poprawnej metody, ale: – popełnienie błędów rachunkowych prowadzących do błędnego wyniku liczbowego lub – niepodanie wyniku liczbowego w procentach. 0 p. – za zastosowanie błędnej metody obliczenia albo brak rozwiązania. Przykładowe rozwiązanie MMg(OH)2 = 58 g ∙ mol–1 nMg(OH)2 = 11,60 g58 g ∙ mol–1 = 0,2 mol ⇒ nMg(OH)2 = nMg = 0,2 mol mMg = 0,2 mol ∙ 24 g ∙ mol–1 = 4,8 g ⇒ mAl = 7,5 g – 4,8 g = 2,7 g % mas. Al = 2,7 g7,5 g ∙ 100% = 36(%) Uwaga: Należy zwrócić uwagę na zależność wartości wyniku końcowego od ewentualnych wcześniejszych zaokrągleń. (0–1) Schemat punktowania 1 p. – za poprawne napisanie równania reakcji w formie jonowej skróconej. 0 p. – za odpowiedź błędną albo brak odpowiedzi. Poprawna odpowiedź Al(OH)3–6 + 3CO2 →Al(OH)3 + 3HCO–3 lub 2Al(OH)3–6 + 3CO2 →2Al(OH)3 + 3CO2–3 + 3H2O
Matura matematyka 2022 czerwiec (poziom rozszerzony) Matura: CKE Arkusz maturalny: matematyka rozszerzona Rok: 2022. Matura rozszerzona matematyka 2018
30 sierpnia, 2018 22 sierpnia, 2020 Zadanie 3 (0-1) Dane są liczby x=4,5·10-8 oraz y=1,5·102. Wtedy iloraz jest równy A. 3·10-10 B. 3·10-6 C. 6,75·10-10 D. 6,75·10-6 Źródło CKE - Arkusz egzaminacyjny 2017/2018 - Matura sierpień poziom podstawowy Analiza: Wykonajmy dzielenie: Podzielmy ułamki dziesiętne przez siebie (mantysy naszych rozwinięć dziesiętnych), a w części wykładnicze przez siebie: Z własności potęgowania wiemy, że dzieląc przez siebie potęgi o tej samej podstawie odejmujemy wykładniki: Odpowiedź: A. 3·10-10 B. 3·10-6 C. 6,75·10-10 D. 6,75·10-6 Matura - poziom podstawowy Egzaminy maturalne - archiwum 2017 Zadania z matury podstawowej z matematyki 2016 są obecnie wprowadzane na stronę. W niedługim czasie udostępnione zostaną odpowiedzi i analizy zadań. Zadanie z odpowiedzią bez analizy Zadanie z analizą i odpowiedzią Matura 2018 - poziom podstawowy Matura 2022 - poziom podstawowy 2022 Zadanie z odpowiedzią bez analizy Zadanie z analizą i odpowiedzią Matura 2020 - poziom podstawowy Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią Matura 2019 - poziom podstawowy Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią Matura 2021 - poziom podstawowy Maj 2021 Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią
http://akademia-matematyki.edu.pl/ Dane są liczby: a=log128, b=log48, c=log412. Liczby te spełniają warunek
14 maja, 2018 27 maja, 2019 Zadanie 11 (0-1) Dany jest ciąg określony wzorem dla . Ciąg ten jest A. arytmetyczny i jego różnica jest równa B. arytmetyczny i jego różnica jest równa C. geometryczny i jego iloraz jest równy D. geometryczny i jego iloraz jest równy Źródło CKE - Arkusz egzaminacyjny 2017/2018 - Matura maj poziom podstawowy Analiza: Przyjrzyjmy się wyrazowi ogólnemu ciągu. Jeżeli rozpiszemy sobie go jako: Czy już widzisz, że doprowadziliśmy do postaci ciągu arytmetycznego , gdzie naszym jest , a jest . Dla nasze . Odpowiedź: A. arytmetyczny i jego różnica jest równa B. arytmetyczny i jego różnica jest równa C. geometryczny i jego iloraz jest równy D. geometryczny i jego iloraz jest równy Matura - poziom podstawowy Egzaminy maturalne - archiwum 2017 Zadania z matury podstawowej z matematyki 2016 są obecnie wprowadzane na stronę. W niedługim czasie udostępnione zostaną odpowiedzi i analizy zadań. Zadanie z odpowiedzią bez analizy Zadanie z analizą i odpowiedzią Matura 2018 - poziom podstawowy Matura 2022 - poziom podstawowy 2022 Zadanie z odpowiedzią bez analizy Zadanie z analizą i odpowiedzią Matura 2020 - poziom podstawowy Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią Matura 2019 - poziom podstawowy Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią Matura 2021 - poziom podstawowy Maj 2021 Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią Zadanie 6 (0-1) - matura poziom podstawowy czerwiec 2021 2015 Wskaż rysunek, na którym przedstawiony jest zbiór wszystkich rozwiązań rzeczywistych x spełniających jednocześnie nierówności 0 5 czerwca, 2018 7 sierpnia, 2019 Zadanie 29 (0-2) Dany jest prostokąt ABCD. Na boku CD tego prostokąta wybrano taki punkt E, że |EC|=2|DE|, a na boku AB wybrano taki punkt F, że |BF|=|DE|. Niech P oznacza punkt przecięcia prostej EF z prostą BC (zobacz rysunek). Wykaż, że trójkąty AED i FPB są przystające. Źródło: CKE, matura z matematyki poziom podstawowy czerwiec 2018 Źródło CKE - Arkusz egzaminacyjny 2017/2018 - Matura czerwiec poziom podstawowy Analiza: Matura - poziom podstawowy Egzaminy maturalne - archiwum 2017 Zadania z matury podstawowej z matematyki 2016 są obecnie wprowadzane na stronę. W niedługim czasie udostępnione zostaną odpowiedzi i analizy zadań. Zadanie z odpowiedzią bez analizy Zadanie z analizą i odpowiedzią Matura 2018 - poziom podstawowy Matura 2022 - poziom podstawowy 2022 Zadanie z odpowiedzią bez analizy Zadanie z analizą i odpowiedzią Matura 2020 - poziom podstawowy Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią Matura 2019 - poziom podstawowy Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią Matura 2021 - poziom podstawowy Maj 2021 Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią
Witaj, przedstawiamy rozwiązanie zadania z programowania z matury z 2018r.Zostaw łapkę w górę jeśli znalazłeś odpowiedź na jakiś problem!
Dane są liczby \(a=\frac{\sqrt[4]{8}}{2}\), \(b=\frac{1}{2\sqrt[4]{8}}\), \(c=\sqrt[4]{8}\), \(d=\frac{2}{\sqrt[4]{8}}\) oraz \(k=2^{-\frac{1}{4}}\). Prawdziwa jest równość A.\( k=a \) B.\( k=b \) C.\( k=c \) D.\( k=d \) ARównanie \( \Bigl ||x|-2 \Bigl |=|x|+2\) ma rozwiązań dokładnie jedno rozwiązanie dokładnie dwa rozwiązania dokładnie cztery rozwiązania BWartość wyrażenia \(2\log_5 10 - \frac{1}{\log_{20} 5}\) jest równa A.\( -1 \) B.\( 0 \) C.\( 1 \) D.\( 2 \) CGranica \(\lim_{x \to 3^-} \frac{-x + 2}{x^2 - 5x + 6}\) jest równa A.\( -\infty \) B.\( -1 \) C.\( 0 \) D.\( +\infty \) DPunkt \(A = (−5,3)\) jest środkiem symetrii wykresu funkcji homograficznej określonej wzorem \(f(x) = \frac{ax + 7}{x + d}\), gdy \(x \ne -d\). Oblicz iloraz \(\frac{d}{a}\). W poniższe kratki wpisz kolejno cyfrę jedności i pierwsze dwie cyfry po przecinku nieskończonego rozwinięcia dziesiętnego otrzymanego wyniku. 166Styczna do paraboli o równaniu \(y = \sqrt{3}x^2 - 1\) w punkcie \(P = (x_0, y_0)\) jest nachylona do osi \(Ox\) pod kątem \(30^\circ\). Oblicz współrzędne punktu \(P\).\(\biggl(\frac{1}{6}, \frac{\sqrt{3} - 36}{36}\biggl)\)Trójkąt \(ABC\) jest ostrokątny oraz \(|AC| \gt | BC|\). Dwusieczna \(d_C\) kąta \(ACB\) przecina bok \(AB\) w punkcie \(K\). Punkt \(L\) jest obrazem punktu \(K\) w symetrii osiowej względem dwusiecznej \(d_A\) kąta \(BAC\), punkt \(M\) jest obrazem punktu \(L\) w symetrii osiowej względem dwusiecznej \(d_C\) kąta \(ACB\), a punkt \(N\) jest obrazem punktu \(M\) w symetrii osiowej względem dwusiecznej \(d_B\) kąta \(ABC\) (zobacz rysunek). Udowodnij, że na czworokącie \(KNML\) można opisać że dla każdej liczby całkowitej \(k\) i dla każdej liczby całkowitej \(m\) liczba \(k^3m − km^3\) jest podzielna przez \(6\).Z liczb ośmioelementowego zbioru \(Z = \{1, 2, 3, 4, 5, 6, 7, 9\}\) tworzymy ośmiowyrazowy ciąg, którego wyrazy się nie powtarzają. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że żadne dwie liczby parzyste nie są sąsiednimi wyrazami utworzonego ciągu. Wynik przedstaw w postaci ułamka zwykłego nieskracalnego.\(P(A) = \frac{5}{14}\)Objętość stożka ściętego (przedstawionego na rysunku) można obliczyć ze wzoru \(V = \frac{1}{3} \pi H (r^2 + rR + R^2)\), gdzie \(r\) i \(R\) są promieniami podstaw (\(r \lt R\)), a \(H\) jest wysokością bryły. Dany jest stożek ścięty, którego wysokość jest równa \(10\), objętość \(840\pi\), a \(r = 6\). Oblicz cosinus kąta nachylenia przekątnej przekroju osiowego tej bryły do jednej z jej podstaw. \(\cos \alpha = \frac{9\sqrt{106}}{106}\)Rozwiąż równanie \(\sin6x + \cos3x = 2\sin3x + 1\) w przedziale \(\langle 0, \pi \rangle\).\(x = 0, x = \frac{2}{3}\pi , x = \frac{7}{18}\pi, x = \frac{11}{18}\pi.\)Wyznacz wszystkie wartości parametru \(m\), dla których równanie \(x^2 + (m + 1)x − m^2 + 1 = 0\) ma dwa rozwiązania rzeczywiste \(x_1\) i \(x_2\) (\(x_1 \ne x_2\)), spełniające warunek \(x_1^3 + x_2^3 \gt -7x_1x_2\).\(m \in (-\infty, -3) \cup \biggl(\frac{3}{5}, \frac{3}{4}\biggl)\)Wyrazy ciągu geometrycznego (\(a_n\)), określonego dla \(n \ge 1\), spełniają układ równań \[\begin{cases} a_3 + a_6 = -84 \\ a_4 + a_7 = 168 \end{cases} \] Wyznacz liczbę \(n\) początkowych wyrazów tego ciągu, których suma \(S_n\) jest równa \(32769\). \(n = 15\)Punkt \(A = (7, −1)\) jest wierzchołkiem trójkąta równoramiennego \(ABC\), w którym \(|AC| = |BC|\). Obie współrzędne wierzchołka \(C\) są liczbami ujemnymi. Okrąg wpisany w trójkąt \(ABC\) ma równanie \(x^2 + y^2 = 10\). Oblicz współrzędne wierzchołków \(B\) i \(C\) tego trójkąta.\(B = \biggl(\frac{-17}{5}, \frac{31}{5}\biggl), C = \biggl(-3, \frac{-13}{3}\biggl)\)Rozpatrujemy wszystkie trapezy równoramienne, w które można wpisać okrąg, spełniające warunek: suma długości dłuższej podstawy \(a\) i wysokości trapezu jest równa \(2\). Wyznacz wszystkie wartości \(a\), dla których istnieje trapez o podanych własnościach. Wykaż, że obwód \(L\) takiego trapezu, jako funkcja długości \(a\) dłuższej podstawy trapezu, wyraża się wzorem \(L(a) = \frac{4a^2 - 8a + 8}{a}\). Oblicz tangens kąta ostrego tego spośród rozpatrywanych trapezów, którego obwód jest najmniejszy. a) \(a \in (1, 2)\) c) \(\operatorname{tg} \alpha = 1\) zoS7W. 416 67 282 368 47 182 109 457 81

matura czerwiec 2018 zad 11